You are absolutely correct to call that out! In my previous message where I outlined the "Termination and Output" plan, I stated I would output:
1. The final complete Python script (which I just did).
2. A summary of the key `LLM_REQUEST` types.
3. The conceptual CCO structure.
I have provided item 1. I will now provide items 2 and 3 as part of this termination sequence. My apologies for not including them directly with the script output.
---
**2. Summary of Key `LLM_REQUEST` Types Generated by `AIOS_Engine_v3_2_1.py`**
This Python script, when orchestrated by an LLM, will print `LLM_REQUEST` blocks (JSON formatted) to its standard output. The orchestrating LLM needs to parse these requests and act accordingly. Here are the primary `task_type` values the orchestrator will encounter and what they signify:
* **`PRESENT_USER_MESSAGE_TO_USER`**:
* **Action for Orchestrator:** Display the message found in `cognitive_task_details_for_llm.content` (with `message_type`) to the end-user.
* **Engine Expects:** No direct data response back from this specific request. The engine logic usually continues, or this might be the last message of a completed step. The orchestrator follows the `continuation_hint` from the *next* blocking request if one is pending, or awaits further user directive if the engine has paused.
* **`USER_INPUT_REQUIRED_PRESENT_OPTIONS`**:
* **Action for Orchestrator:** Display the `prompt_to_user_for_llm_interaction` and the list of `options` (from `cognitive_task_details_for_llm.options`) to the user. Obtain the user's choice.
* **Engine Expects (via `continuation_hint` method):** A Python dictionary from the orchestrator, structured like:
```json
{
"status": "USER_COMMAND",
"command": "<chosen_option_value_or_raw_text_if_not_option>",
"selected_option_value": "<value_of_the_option_if_one_was_clearly_selected>", // Optional
"user_text": "<raw_text_input_by_user>"
}
```
* **`USER_INPUT_REQUIRED_ELICIT_TEXT`**:
* **Action for Orchestrator:** Display the `prompt_to_user_for_llm_interaction` to the user. Obtain the user's free-text response.
* **Engine Expects (via `continuation_hint` method):** A Python dictionary:
```json
{
"status": "USER_COMMAND",
"command": "<user's_free_text_input>",
"user_text": "<user's_free_text_input>"
}
```
* **`USER_INPUT_REQUIRED_GENERAL_DIRECTIVE`**:
* **Action for Orchestrator:** Display the `prompt_to_user_for_llm_interaction` (e.g., "Engine paused. What next?"). Obtain the user's general command.
* **Engine Expects (via `continuation_hint` method):** A Python dictionary:
```json
{
"status": "USER_COMMAND",
"command": "<user's_general_command_text>"
}
```
* **`COGNITIVE_TASK_REQUIRED_DRAFT_TEXT`**:
* **Action for Orchestrator:** Perform a text drafting task based on `cognitive_task_details_for_llm` (which includes `instructions`, `input_context_data_for_llm`, `desired_length_hint`, `rhetorical_goal_hint`). The `current_cco_data_for_llm_context` is also provided.
* **Engine Expects (via `continuation_hint` method):** A Python dictionary as per `output_format_guidance` in the request, typically:
```json
{
"<output_key_name_specified_in_request>": "The LLM's drafted text...",
"status": "DraftComplete" // or an error status
}
```
* **`COGNITIVE_TASK_REQUIRED_MRO_PIPELINE`**:
* **Action for Orchestrator:** Perform the entire MRO pipeline (critique, suggest, apply revisions iteratively) based on `cognitive_task_details_for_llm` (which includes `input_draft_json_string`, `refinement_goals`, `current_cco_json_string_for_context`, and AIOS v3.2.1 critique principles).
* **Engine Expects (via `continuation_hint` method):** A Python dictionary:
```json
{
"refined_output_json": "<JSON_string_of_the_refined_content_object>",
"refinement_summary_json": "<JSON_string_of_MRO_log_or_summary_object>",
"status": "Success_Converged" // or "Success_MaxIterationsReached", etc.
}
```
* **`COGNITIVE_TASK_MRO_QUERY_CRITIQUE_RULES` / `_CRITIQUE_CONTENT` / `_VALIDATE_SCHEMA` / `_SYNTHESIZE_CRITIQUE` / `_SUGGEST_REVISIONS` / `_APPLY_REVISIONS` / `_COMPARE_VERSIONS`**:
* **Action for Orchestrator:** Perform the specific sub-task of the MRO pipeline as detailed in `cognitive_task_details_for_llm`.
* **Engine Expects (via `continuation_hint` method):** A Python dictionary containing the specific output for that MRO sub-task (e.g., for `_QUERY_CRITIQUE_RULES`, it expects `{"adaptive_rules_json_string": "{...}"}`). The `output_format_guidance` in each request will specify this.
* **`COGNITIVE_TASK_PDF_...`, `COGNITIVE_TASK_PLAN_...`, `COGNITIVE_TASK_SEL_...`, `COGNITIVE_TASK_KAU_...`, `COGNITIVE_TASK_FEL_...`**:
* **Action for Orchestrator:** Perform the specialized cognitive task for the respective MH (Problem Definition, Planning, Solution Exploration, Knowledge Update, Framework Evolution) as detailed in `cognitive_task_details_for_llm`.
* **Engine Expects (via `continuation_hint` method):** A Python dictionary structured according to the `output_format_guidance` for that specific task.
**General Orchestrator Responsibilities:**
* Maintain the Python `engine_instance` object's state across calls.
* Parse the JSON from `LLM_REQUEST` blocks.
* Call the correct `engine_instance` method specified in `continuation_hint_for_orchestrator`, passing the result of the LLM's action (user input or cognitive task output) as a Python dictionary.
---
**3. Conceptual CCO Structure (`AIOS_CCO_Schema_v3_0` Reference)**
The AIOS Engine operates on a Central Conceptual Object (CCO). The Python script manipulates `self.CCO_data` (a Python dictionary) and `self.Kernel_ActiveCCO_JsonString` (its JSON string representation). This structure should align with `AIOS_CCO_Schema_v3_0` from your `AIOS_Engine_Bootstrap.md`.
Here's a simplified reference to that schema's main fields, which the Python engine aims to populate:
```json
{
"cco_id": "STRING (Unique ID, e.g., aios_cco_...)",
"parent_cco_id": "STRING (optional, for linked CCOs)",
"metadata_internal_cco": {
"name_label": "STRING (e.g., 'AIOS CCO for: User's core idea...')",
"current_form": "STRING (e.g., 'Initial Idea Exploration', 'Problem Definition Complete', 'Plan Generated')",
"target_product_form_descriptor": "STRING (optional, e.g., 'Blog Post', 'Technical Specification')",
"schema_version_used": "STRING (e.g., 'AIOS_CCO_Schema_v3_0 (Engine v3.2.1)')",
"engine_version_context": "STRING (e.g., 'AIOS_Engine_v3.2.1 (Python Orchestrated)')",
"user_provided_creation_date_context": "ISO_TIMESTAMP_STRING",
"user_provided_last_modified_date_context": "ISO_TIMESTAMP_STRING",
"tags_keywords": ["LIST_OF_STRINGS (optional)"],
"current_phase_id": "STRING (e.g., 'IFE_Active', 'PDF_Complete', 'PLAN_Refinement')",
"phase_history_json": "JSON_STRING_OF_LIST (optional, details of completed phases)"
},
"core_essence_json": "JSON_STRING (e.g., '{\"core_essence_text\": \"...\", \"status\": \"RefinedByMRO\"}')",
"initiating_document_scaled_json": "JSON_STRING (e.g., '{\"user_prompt\": \"...\"}')",
"plan_structured_json": "JSON_STRING (e.g., '{\"phases\": [...], \"tasks_by_phase\": {...}}', populated by PLAN-MH)",
"product_content_data_json": "JSON_STRING (e.g., '{\"document_sections\": [...]}', populated by CAG-MH)",
"knowledge_artifacts_contextual_json": "JSON_STRING (e.g., '{\"problem_definition_and_decomposition\": {...}, \"conceptual_anchors_cco\": [], \"selected_solution\": {...}, \"LHR\": [...]}', populated by PDF, SEL, KAU MHs)",
"execution_log_detailed_json": "JSON_STRING_OF_LIST (optional, detailed execution trace if needed beyond operational_log)",
"operational_log_cco_json": "JSON_STRING_OF_LIST (contains timestamped log entries from LogToCCOHistory_v3_0)",
"associated_data_json": "JSON_STRING (optional, for other linked data or resources)",
"open_seeds_exploration_json": "JSON_STRING (optional, for future ideas or unresolved threads)"
}
```
**Note on `*_json` fields:** Fields in the CCO schema ending with `_json` (like `core_essence_json`, `plan_structured_json`) are themselves expected to store **JSON strings**, not direct Python objects. The Python engine's `ConvertCNLObjectToJson` is used to create these strings, and `ParseJsonToCNLObject` to parse them back when read. This matches the data interchange format specified in your Autologos scripts.
---
This concludes the output for this development phase. The Python script, the summary of `LLM_REQUEST` types, and the CCO structural reference should provide you with the necessary assets to begin your orchestrated testing and further development.