```
# Name: LorentzViolationSimulation.py
# Purpose: Test Planck-scale Lorentz violation using the IO framework.
# Status: Toy model with foundational progress.
import numpy as np
import micropip
await micropip.install('numpy')
await micropip.install('matplotlib')
class PhotonNode:
def __init__(self, energy):
self.energy = energy # Photon energy (J)
self.state = {'position': 0.0} # Initial position
self.alpha = 1e-18 # Framework's predicted value
self.E_planck = 1.22e28 # Planck energy (J)
def compute_velocity(self):
# IO's prediction: v(E) = c(1 - α E/E_planck)
c = 3e8 # Speed of light (m/s)
return c * (1 - self.alpha * self.energy / self.E_planck)
class CausalLattice:
def __init__(self, num_nodes):
self.nodes = [PhotonNode(0.0) for _ in range(num_nodes)]
self.distance = 1e24 # Mock distance to GRB source (meters)
def emit_photon(self, energy):
photon = self.nodes[0]
photon.energy = energy
return photon
def simulate_arrival_time(self, photon):
v = photon.compute_velocity()
return self.distance / v
# Setup: Simulate three gamma-ray photons
lattice = CausalLattice(5)
energies = np.array([1e-13, 1e-12, 1e-11]) # In joules (1 GeV = 1.6e-10 J)
times = [lattice.simulate_arrival_time(lattice.emit_photon(E)) for E in energies]
# Plot prediction vs. classical physics
plt.plot(energies, times, 'ro-', label='IO Prediction')
plt.axhline(y=lattice.distance/3e8, color='blue', linestyle='--', label='Classical Physics (α=0)')
plt.xlabel('Photon Energy (J)')
plt.ylabel('Arrival Time (s)')
plt.title('Lorentz Violation Test')
plt.legend()
plt.show()
```