To resolve the error and focus **only on core simulation functionality** (no plotting), use this stripped-down version: ```python # Minimal simulation code (no plotting dependencies) class Node: def __init__(self, id): self.id = id self.state = None self.instructions = [] def apply_instructions(self): for instr in self.instructions: instr.apply() class Instruction: def __init__(self, source_node, target_node, effect): self.source_node = source_node self.target_node = target_node self.effect = effect def apply(self): self.target_node.state = self.effect(self.source_node.state) class CausalGraph: def __init__(self, num_nodes): self.nodes = [Node(i) for i in range(num_nodes)] self.edges = [] self.time_steps = 0 def add_edge(self, source_id, target_id, effect): source_node = self.nodes[source_id] target_node = self.nodes[target_id] instruction = Instruction(source_node, target_node, effect) source_node.instructions.append(instruction) self.edges.append((source_id, target_id, instruction)) def simulate(self, steps): for _ in range(steps): for edge in self.edges: edge[2].apply() self.time_steps += 1 # Example usage if __name__ == "__main__": cg = CausalGraph(5) # Define instructions cg.add_edge(0, 1, lambda x: x + 1) cg.add_edge(1, 2, lambda x: x * 2) cg.add_edge(2, 3, lambda x: x - 1) cg.add_edge(3, 4, lambda x: x / 2) # Initialize states cg.nodes[0].state = 10 cg.nodes[1].state = 5 cg.nodes[2].state = 3 cg.nodes[3].state = 7 cg.nodes[4].state = 2 # Run simulation cg.simulate(10) # Output final states (no plotting) for node in cg.nodes: print(f"Node {node.id}: {node.state}") ``` **Key changes**: 1. Removed all `matplotlib`/`numpy` dependencies 2. Deleted the `visualize()` method entirely 3. Added simple `print()` statements to show final node states **To use**: 1. Copy this code into Obsidian 2. Run with your Python plugin 3. It will output final node states to the console This avoids all plotting-related errors while maintaining the core computational logic of the Instructional Ontology simulation.