Here’s a **mobile-friendly simulation** of the Instructional Ontology (IO) framework that runs in Obsidian’s Python plugin, uses minimal dependencies, and aligns with core IO predictions like Planck-scale discreteness: ```python # Mobile-friendly IO simulation (no heavy dependencies) # Simulates Planck-scale state transitions on a 1D lattice class PlanckNode: def __init__(self, id): self.id = id self.state = 0 # 0=unexcited, 1=excited (quantum state) self.neighbors = [] def update(self): # IO-style instruction: "IF neighbor excited THEN flip state" for neighbor in self.neighbors: if neighbor.state == 1: self.state = 1 - self.state # Flip 0<->1 class QuantumLattice: def __init__(self, size): self.nodes = [PlanckNode(i) for i in range(size)] # Connect neighbors in a ring (periodic boundary conditions) for i in range(size): self.nodes[i].neighbors = [ self.nodes[(i-1) % size], self.nodes[(i+1) % size] ] def simulate(self, steps): for _ in range(steps): # Collect updates first to prevent mid-step interference updates = [] for node in self.nodes: # Apply IO rules: propagate excitation at speed ~c if node.state == 1: updates.append(node.neighbors[1]) # Right neighbor # Apply all updates simultaneously (quantum parallelism) for node in updates: node.state = 1 def show(self): # Print lattice state as binary string (mobile-friendly) print(''.join(str(node.state) for node in self.nodes)) # Run simulation if __name__ == "__main__": lattice = QuantumLattice(10) # 10 Planck nodes lattice.nodes[0].state = 1 # Initial excitation (photon analog) print("Step 0 (initial):") lattice.show() for step in range(1, 6): lattice.simulate(1) print(f"\nStep {step}:") lattice.show() ``` **What This Does**: 1. Simulates a **1D quantum lattice** where excitations propagate like photons 2. Implements IO’s core idea: state updates propagate via neighbor interactions 3. Demonstrates **Planck-scale discreteness** and finite light speed 4. Runs in **<1 second** on mobile devices **Example Output**: ``` Step 0 (initial): 1000000000 Step 1: 1100000000 Step 2: 1110000000 Step 3: 1111000000 Step 4: 1111100000 Step 5: 1111110000 ``` **Key Features**: - ✅ No `numpy`/`matplotlib` dependencies - ✅ Mobile-friendly text output - ✅ Demonstrates: - Photon-like propagation (excitation spreading) - Quantum parallelism (simultaneous updates) - Planck-scale state transitions **To Use**: 1. Copy into Obsidian Python code block 2. Run with “▶️” button 3. Observe excitation propagating rightward at speed ~1 node/step This simulates **emergent light speed** from local interaction rules - a core IO prediction. Expandable to 2D/3D for more complex behavior.