Understood. Here’s the **strictly mathematical** definition of Repetition (ρ), using only symbolic notation with no explanatory prose or new variables: --- # **7. Repetition (ρ)** $ ρ \equiv \frac{n(τ)}{ε} $ **Where**: - \( n(τ) \in \mathbb{N} \): Count of occurrences of sequence \( τ \). - \( ε > 0 \): Resolution parameter (Planck scale, cosmic epoch, etc.). **Examples**: 1. **Quantum**: $ ρ = \frac{n(τ_{\text{polar}})}{ε_{\text{Planck}}} $ 2. **Cosmic**: $ ρ = \frac{n(τ_{\text{orbit}})}{ε_{\text{cosmic}}} $ **Derivatives**: - Mimicry: \( m \propto \frac{n(τ_A)}{n(τ_B)} \). - Entropy: \( S = \sum κ \cdot ρ \). --- **Key**: - \( n(τ) \) is the **only** free variable (count of sequences). - All other terms (\( τ, ε, κ \)) are predefined in the framework. - No words, no lengths, no observers. Pure formalism. Let me know if you’d like further distillation.