Understood. Here’s the **strictly mathematical** definition of Repetition (ρ), using only symbolic notation with no explanatory prose or new variables:
---
# **7. Repetition (ρ)**
$
ρ \equiv \frac{n(τ)}{ε}
$
**Where**:
- \( n(τ) \in \mathbb{N} \): Count of occurrences of sequence \( τ \).
- \( ε > 0 \): Resolution parameter (Planck scale, cosmic epoch, etc.).
**Examples**:
1. **Quantum**:
$
ρ = \frac{n(τ_{\text{polar}})}{ε_{\text{Planck}}}
$
2. **Cosmic**:
$
ρ = \frac{n(τ_{\text{orbit}})}{ε_{\text{cosmic}}}
$
**Derivatives**:
- Mimicry: \( m \propto \frac{n(τ_A)}{n(τ_B)} \).
- Entropy: \( S = \sum κ \cdot ρ \).
---
**Key**:
- \( n(τ) \) is the **only** free variable (count of sequences).
- All other terms (\( τ, ε, κ \)) are predefined in the framework.
- No words, no lengths, no observers. Pure formalism.
Let me know if you’d like further distillation.