# **Section 2: Types of Information**
2.1. **Universal Information (\( \mathbf{I} \))**
- **2.1.1.** **Definition**: The **non-physical, ineffable foundation** of reality, existing independently of human constructs or observation.
- **2.1.1.1.** **Example**: While we use terms like “spin” or “position” to describe it, these are **constructed models** (e.g., math, physics) that approximate \( \mathbf{I} \).
- **2.1.1.2.** **Abstraction**: \( \mathbf{I} \) cannot be directly observed or fully defined; it is inferred through its effects (e.g., gravitational pull, particle interactions) and the iterative refinement of human constructs.
- **2.1.2.** **Role**: The irreducible “blueprint” of reality, from which all phenomena (physical, cognitive, hybrid) emerge.
- **2.1.3.** **Limitations**:
- **2.1.3.1.** **Ineffability**: \( \mathbf{I} \) transcends human language and mathematics. Terms like “spin” or “position” are **proxies**, not direct descriptors.
- **2.1.3.2.** **Empirical Access**: We only interact with \( \mathbf{I} \) through **constructed frameworks** (e.g., quantum mechanics, relativity).
---
2.2. **Constructed Information (\( \mathbf{I}_{\text{synth}} \))**
- **2.2.1.** **Definition**: **Human-made systems** (e.g., math, language, physics theories) used to approximate, model, or organize universal information (\( \mathbf{I} \)).
- **2.2.1.1.** **Examples**:
- **Mathematical Constructs**: Number systems, vectors, and equations (e.g., \( \epsilon \) as a resolution parameter).
- **Cognitive Constructs**: Language (e.g., “dark matter”), economic systems, or fictional narratives (Harari’s “cognitive fictions”).
- **Scientific Models**: The Standard Model of particle physics, general relativity, or even the concept of “spin” itself.
- **2.2.2.** **Role**:
- **2.2.2.1.** **Tools for Approximation**: \( \mathbf{I}_{\text{synth}} \) translates \( \mathbf{I} \) into measurable or understandable terms.
- **2.2.2.2.** **Iterative Refinement**: Models evolve (e.g., Newtonian gravity → general relativity) as observations improve or constructs become outdated.
- **2.2.3.** **Limitations**:
- **2.2.3.1.** **Subjectivity**: Constructs like “spin” or “dark matter” are **human-imposed frameworks**, not inherent properties of \( \mathbf{I} \).
- **2.2.3.2.** **Paradoxes**: Constructs may conflict (e.g., quantum vs. classical physics) until unified by a higher-order model (IUH, Quni 2025).
---
2.3. **Observed/Cognitive Information (\( \hat{\mathbf{I}} \))**
- **2.3.1.** **Definition**: **Discretized, sampled data** derived from \( \mathbf{I} \), constrained by constructed frameworks (\( \mathbf{I}_{\text{synth}} \)) and measurement limits (\( \epsilon \)).
- **2.3.1.1.** **Examples**:
- **Physical Observations**: Telescopic measurements of star positions, particle detector outputs.
- **Cognitive Observations**: Human interpretations of reality (e.g., “gravity” as a force, or fictional stories).
- **AI Outputs**: Neural network predictions or quantum computing simulations.
- **2.3.2.** **Role**:
- **2.3.2.1.** **Bridge Between \( \mathbf{I} \) and \( \mathbf{I}_{\text{synth}} \)**: Observed data is the raw material for constructing models.
- **2.3.2.2.** **Imperfect Representation**: \( \hat{\mathbf{I}} \) is **resolution-dependent** and often incomplete.
- **2.3.3.** **Measurement Collapse**:
- **2.3.3.1.** **Formula**:
\[
\hat{\mathbf{I}} = \text{round}\left( \frac{\mathbf{I}_{\text{continuous}}}{\epsilon} \right) \cdot \epsilon \quad \text{(Discretizes } \mathbf{I} \text{ into observable terms)}
\]
- **2.3.3.2.** **Example**: A quantum particle’s “spin-up” or “spin-down” are **discrete labels** imposed by measurement tools, not intrinsic to \( \mathbf{I} \).
---
2.4. **The Iterative Feedback Loop**
- **2.4.1.** **Constructs → Observations → Refinement**:
- **2.4.1.1.** **Step 1**: Humans create \( \mathbf{I}_{\text{synth}} \) (e.g., math, physics) to model \( \mathbf{I} \).
- **2.4.1.2.** **Step 2**: \( \hat{\mathbf{I}} \) is extracted using \( \mathbf{I}_{\text{synth}} \) (e.g., telescopes, particle detectors).
- **2.4.1.3.** **Step 3**: Discrepancies between predictions and observations (e.g., dark matter anomalies) drive updates to \( \mathbf{I}_{\text{synth}} \).
- **2.4.2.** **Example**:
- **2.4.2.1.** **Dark Matter**: A synthetic construct (\( \mathbf{I}_{\text{synth}} \)) created to explain gaps in observed data (\( \hat{\mathbf{I}} \)). The IUH framework reinterprets these gaps as limitations of our models, not flaws in \( \mathbf{I} \).
- **2.4.3.** **Philosophical Note**:
- **2.4.3.1.** \( \mathbf{I} \) is akin to Kant’s “noumenon”—unknowable in itself, but inferable through phenomena (\( \hat{\mathbf{I}} \)).
- **2.4.3.2.** **Gödelian Limits**: No construct (\( \mathbf{I}_{\text{synth}} \)) can fully capture \( \mathbf{I} \); all models are partial and fallible.
---
2.5. **Formalizing the Ineffable**
- **2.5.1.** **Operational Definition of \( \mathbf{I} \)**:
- **2.5.1.1.** \( \mathbf{I} \) is defined **indirectly** through its **effects** (e.g., gravitational pull, particle interactions) and the **relationships** between constructs (\( \mathbf{I}_{\text{synth}} \)) and observations (\( \hat{\mathbf{I}} \)).
- **2.5.1.2.** **Example**:
- “Spin” is a construct that models an aspect of \( \mathbf{I} \), but \( \mathbf{I} \) itself is not a scalar or vector—it is the **underlying reality** that these terms approximate.
- **2.5.2.** **Mathematics as a Construct**:
- **2.5.2.1.** Numbers, equations, and even vectors (e.g., \( \mathbf{I} \)) are **tools** for describing \( \mathbf{I} \), not \( \mathbf{I} \) itself.
- **2.5.2.2.** **Limitations**: The resolution parameter (\( \epsilon \)) operationalizes measurement precision but never fully captures \( \mathbf{I} \).
---
2.6. **The Role of Resolution (\( \epsilon \))**
- **2.6.1.** **Defining Measurement Precision**:
- **2.6.1.1.** \( \epsilon \) determines how finely \( \mathbf{I} \) is sampled into \( \hat{\mathbf{I}} \).
- **2.6.1.2.** **Example**:
- At \( \epsilon \sim \text{Planck scale} \), quantum constructs (e.g., spin) may better approximate \( \mathbf{I} \).
- At \( \epsilon \sim \text{astronomical scale} \), classical constructs (e.g., Newtonian gravity) suffice but are incomplete.
- **2.6.2.** **Synthetic Knowledge as Resolution-Dependent**:
- **2.6.2.1.** Models like dark matter (\( \mathbf{I}*{\text{synth}} \)) arise when \( \epsilon \) is too coarse to capture \( \rho*{\mathbf{I}} \) (information density).
- **2.6.2.2.** **Future Refinement**: Advances in measurement (\( \epsilon \to 0 \)) could reduce reliance on synthetic constructs.
---
2.7. **Why Constructed Information is Necessary**
- **2.7.1.** **Human Cognition**:
- **2.7.1.1.** The brain relies on constructs (\( \mathbf{I}_{\text{synth}} \)) to simplify \( \mathbf{I} \) (e.g., “spin” instead of raw quantum state vectors).
- **2.7.1.2.** **Example**: The number system is a \( \mathbf{I}_{\text{synth}} \) that discretizes continuous quantities (e.g., position as a real number).
- **2.7.2.** **Science as Iterative Modeling**:
- **2.7.2.1.** Theories like Newtonian mechanics or quantum field theory are **staged approximations** of \( \mathbf{I} \).
- **2.7.2.2.** **IUH’s Role**: Provides a **meta-framework** to unify these constructs by grounding them in \( \mathbf{I} \).
---
2.8. **Cognitive Fictions and Their Validity**
- **2.8.1.** **Fictions as Useful Models**:
- **2.8.1.1.** Even fictional constructs (e.g., “dark matter,” “money”) have predictive power if they align with \( \hat{\mathbf{I}} \).
- **2.8.1.2.** **Harari’s “Cognitive Fictions”**: Human agreements on abstract concepts (e.g., nations, religions) are \( \mathbf{I}_{\text{synth}} \) models for social systems.
- **2.8.2.** **Validation Criteria**:
- **2.8.2.1.** A construct (\( \mathbf{I}_{\text{synth}} \)) is useful if it predicts \( \hat{\mathbf{I}} \) (e.g., Newtonian gravity predicts planetary orbits).
- **2.8.2.2.** **Failure Case**: Dark matter fails as a construct because it assumes physicality, while \( \mathbf{I} \) is non-physical (IUH, Quni 2025).
---
2.9. **Conclusion for Section 2**
- **2.9.1.** **Universal Information (\( \mathbf{I} \))**: The ineffable foundation of reality, inferred but never fully captured by human constructs.
- **2.9.2.** **Constructed Information (\( \mathbf{I}_{\text{synth}} \))**: Tools (e.g., math, language) for approximating \( \mathbf{I} \), subject to refinement.
- **2.9.3.** **Observed Data (\( \hat{\mathbf{I}} \))**: The interface between \( \mathbf{I} \) and \( \mathbf{I}_{\text{synth}} \), constrained by measurement limits (\( \epsilon \)).
- **2.9.4.** **Iterative Process**: Science progresses by cycling between constructs, observations, and updates to \( \mathbf{I}_{\text{synth}} \).
---