``` import numpy as np from typing import Dict, List, Optional, Tuple from dataclasses import dataclass from enum import Enum import logging # Core data structures @dataclass class OptimizationParameters: verifiability_threshold: float specificity_bounds: Tuple[float, float] confidence_limits: Tuple[float, float] type_1_threshold: float type_2_threshold: float confidence_interval: float local_optima_threshold: float global_search_depth: int iteration_limit: int @dataclass class Solution: content: str confidence: float verification_path: List[str] bias_assessment: Dict[str, float] robustness_score: float class BiasType(Enum): TRAINING = "training_data" SAMPLING = "sampling" SELECTION = "selection" CONFIRMATION = "confirmation" class ResponseOptimizer: def __init__(self, params: OptimizationParameters): self.params = params self.logger = logging.getLogger(__name__) def analyze_input(self, query: str) -> Dict: """Parse and analyze input query.""" tokens = self._tokenize(query) assumptions = self._identify_assumptions(tokens) constraints = self._map_constraints(assumptions) completeness = self._evaluate_completeness(tokens, constraints) return { "tokens": tokens, "assumptions": assumptions, "constraints": constraints, "completeness": completeness } def generate_solution_space(self, query: str, analysis: Dict) -> List[Solution]: """Generate initial solution candidates.""" basis_vectors = self._generate_basis_vectors(analysis) feasible_region = self._project_query(query, basis_vectors) candidates = [] for i in range(self.params.global_search_depth): solution = self._generate_candidate(feasible_region, analysis) if self._meets_constraints(solution): candidates.append(solution) return candidates def test_solutions(self, candidates: List[Solution]) -> List[Solution]: """Apply adversarial testing to candidates.""" tested_solutions = [] for solution in candidates: # Apply Socratic questioning assumptions_valid = self._test_assumptions(solution) edge_cases_valid = self._test_edge_cases(solution) logical_gaps = self._identify_logical_gaps(solution) # Test against inverse problems negation_set = self._generate_negation_set(solution) contradictions = self._find_contradictions(solution, negation_set) # Calculate robustness score robustness = min( self._evaluate_logical_consistency(solution), self._evaluate_verifiability(solution), self._evaluate_completeness(solution) ) solution.robustness_score = robustness tested_solutions.append(solution) return tested_solutions def optimize_response(self, candidates: List[Solution]) -> Solution: """Iteratively refine solutions.""" iterations = 0 best_solution = max(candidates, key=lambda x: x.robustness_score) while iterations < self.params.iteration_limit: variations = self._generate_variations(best_solution) for variant in variations: variant = self._detect_and_adjust_bias(variant) if variant.robustness_score > best_solution.robustness_score: best_solution = variant if self._check_convergence(best_solution): break iterations += 1 return best_solution def _detect_and_adjust_bias(self, solution: Solution) -> Solution: """Detect and adjust for various types of bias.""" biases = {} for bias_type in BiasType: bias_score = self._evaluate_bias(solution, bias_type) biases[bias_type.value] = bias_score # Adjust confidence based on detected bias total_bias = sum(biases.values()) / len(biases) solution.confidence *= (1 - total_bias) solution.bias_assessment = biases return solution def generate_final_response(self, solution: Solution) -> Dict: """Assemble final response with metadata.""" response = { "content": solution.content, "metadata": { "confidence": solution.confidence, "verification_path": solution.verification_path, "bias_assessment": solution.bias_assessment, "robustness_score": solution.robustness_score } } # Final quality checks if not self._verify_final_response(response): self.logger.warning("Final response failed verification") response["metadata"]["warning"] = "Response may not meet all quality criteria" return response def _verify_final_response(self, response: Dict) -> bool: """Perform final verification of response.""" checks = [ self._verify_optimization_parameters(response), self._verify_confidence_bounds(response), self._verify_internal_consistency(response), self._verify_specificity(response) ] return all(checks) def _calibrate_response(self, response: Dict, user_context: Dict) -> Dict: """Calibrate response based on user context.""" response["content"] = self._adjust_specificity( response["content"], user_context.get("expertise_level", "general") ) response["content"] = self._adjust_technical_level( response["content"], user_context.get("technical_level", "medium") ) depth_ratio = self._calculate_depth_ratio( response["content"], user_context.get("time_constraint", float('inf')) ) if depth_ratio > 1.0: response["content"] = self._compress_content(response["content"]) return response def handle_error(self, error_type: str, details: Dict) -> Dict: """Handle various types of errors in response generation.""" if error_type == "ambiguity": clarifying_questions = self._generate_clarifying_questions(details) return {"type": "clarification_needed", "questions": clarifying_questions} elif error_type == "logical_inconsistency": resolution = self._attempt_logical_resolution(details) if not resolution["resolved"]: return {"type": "clarification_needed", "contradiction_points": resolution["points"]} return resolution elif error_type == "knowledge_gap": return { "type": "knowledge_boundary", "limitation": details["gap_description"], "alternatives": self._suggest_alternatives(details) } return {"type": "unknown_error", "details": details} ```