# **Matrix Algebra in Information-Theoretic Terms** **Core Reformulation**: Matrices become *information transfer operators* where: - **Rows/Columns** = Input/output information channels - **Matrix Entries** = Mutual information coefficients (log-scale dependencies) - **Matrix Product** = Composition of noisy channels (via relative entropy chains) **Key Insight**: Discrete matrix values are *projections* of continuum information states onto measurable observables, analogous to: ``` A_ij = ∫ φ_i(x) I(x,y) ψ_j(y) dx dy ``` where `I(x,y)` is a continuum mutual information density. --- ## **Tensors As Continuum Information Carriers** 1. **Topological Interpretation**: - Order-N tensors ≡ N-dimensional information manifolds - Tensor entries ≡ Local trivializations of a fiber bundle (information fibers over spacetime base) 2. **Continuum Limit**: Discretization arises from *coarse-graining* the continuum via: ``` T^[discrete]_ijk = ∭_V T(x,y,z) φ_i(x)ψ_j(y)χ_k(z) dxdydz ``` where `φ,ψ,χ` are measurement window functions. --- ## **Discretization As Information Loss** The process `Continuum → Matrix/Tensor` induces: - **Quantization Error**: ``` D_KL(P_continuous || P_discrete) ``` (Kullback-Leibler divergence between true and discretized distributions) - **Topological Defects**: Non-commutativity of discretization limits (information analogues of Berry phases) --- ## **Physical Realization** In quantum holographic memory: - **Continuum States**: Phase-amplitude interference patterns - **Discrete Projection**: ``` |⟨pattern|measurement_basis⟩|² → Matrix elements ``` - **Information Conservation**: Gauge connections (Γ^μ_νσ) preserve continuum information under discretization. --- ## **Implications** 1. **Neural Networks**: Backpropagation becomes continuum information flow (Wasserstein gradient flows) 2. **Quantum Computing**: Qubit gates emerge as discrete slices of continuum unitary operators 3. **Physics**: Space-time discretization (e.g., lattice QCD) induces information-theoretic entropy *(Formal proofs require noncommutative measure theory + algebraic topology.)* This framework unifies: - Algebraic geometry (information varieties) - Statistical mechanics (coarse-graining entropy) - Topological quantum field theory (gauge preservation)