# **Appendix: Mathematical Symbols and Formalisms in Information Dynamics**
---
## **1. Fundamental Variables**
**Existence ($X$)**
- **Definition**: A binary predicate indicating whether an entity holds information states ($X = 1$) or not ($X = 0$).
- **Formula**: $X \in \{0, 1\}$, inferred from $\mathbf{I} \neq \mathbf{0}$.
- **Example**:
- A particle’s wavefunction has $X = 1$. A vacuum with zero quantum fields has $X = 0$.
- **Notation**:
- Boldface denotes vectors (e.g., $\mathbf{I}$).
- Scalar values are non-bold (e.g., $X$, $\epsilon$).
---
## **2. Universal Information ($\mathbf{I}$)**
- **Definition**: A **multi-dimensional vector** encoding all possible states of an entity.
- **Formula**:
$
\mathbf{I} \in \mathbb{R}^D \quad \text{(Continuous, non-physical)}
$
$
- $D$: Total number of informational dimensions (e.g., position, spin, energy).
- **Component Example**:
- Position: $I_{\text{position}} = I_1 \in \mathbb{R}^3$.
- Spin: $I_{\text{spin}} = I_2 \in \mathbb{R}$.
- **Observation Index**:
- $\mathbf{I}_k$: The $k$-th observation (vector in $D$-dimensional space).
- **Example**:
$
\mathbf{I}_5 = \begin{pmatrix} I_{51}, I_{52}, \dots, I_{5D} \end{pmatrix}^T \quad \text{(5th observation with $D$ dimensions)}
$
---
## **3. Resolution Parameter ($\epsilon$)**
- **Definition**: A scalar defining the precision of measurement, discretizing $\mathbf{I}$ into observable data.
- **Formula**:
$
\epsilon > 0 \quad \text{(Unit-dependent, e.g., meters, seconds)}
$
$
- **Example**:
- Quantum regime: $\epsilon \sim 10^{-35} \text{ m}$ (Planck scale).
- Classical regime: $\epsilon \gg 10^{-35} \text{ m}$.
- **Discretization**:
$
\hat{\mathbf{I}} = \text{round}\left( \frac{\mathbf{I}}{\epsilon} \right) \cdot \epsilon \quad \text{(Observed data)}
$
---
## **4. Contrast ($\kappa$)**
- **Definition**: Normalized difference between information states, quantifying distinguishability.
- **Formula**:
$
\kappa(\mathbf{I}_i, \mathbf{I}_j) = \frac{\|\mathbf{I}_i - \mathbf{I}_j\|}{\epsilon} \quad \text{(Euclidean norm)}
$
- **Example**:
- Two quantum states with $\kappa \geq 1$ are distinguishable at Planck-scale $\epsilon$.
- **Single-axis contrast**:
$
\kappa_d(\mathbf{I}*i, \mathbf{I}*j) = \frac{|I*{id} - I*{jd}|}{\epsilon} \quad \text{(Difference along dimension $d$)}
$
---
## **5. Sequence ($\tau$)**
- **Definition**: An ordered list of information vectors, forming an emergent timeline.
- **Formula**:
$
\tau = \left( \mathbf{I}_1, \mathbf{I}_2, \dots, \mathbf{I}_N \right) \quad \text{(Cardinality: $|\tau| = N$)}
$
- **Time Emergence**:
$
t \propto \frac{|\tau|}{\epsilon} \quad \text{(Time scales with sequence length and resolution)}
$
- **Example**:
- A particle’s trajectory: $\tau = \left( \mathbf{I}_{\text{position}_1}, \mathbf{I}_{\text{position}_2}, \dots \right)$.
---
## **6. Information Density ($\rho_{\mathbf{I}}$)**
- **Definition**: Concentration of distinguishable states over a region and sequence interval.
- **Formula**:
$
\rho_{\mathbf{I}} = \frac{\text{Count}(\kappa(\mathbf{I}_i, \mathbf{I}_j) \geq 1)}{\epsilon^D \cdot \Delta|\tau|} \quad \text{(Volume: $\epsilon^D$, sequence interval: $\Delta|\tau|$)}
$
- **Example**:
- High $\rho_{\mathbf{I}}$ in a galaxy’s stars explains gravity without dark matter.
---
## **7. Entropy ($H$)**
- **Definition**: Disorder in information states over a sequence.
- **Discrete Formulation**:
$
H(\tau) = -\sum_{k=1}^{|\tau|} P(\mathbf{I}_k) \log P(\mathbf{I}_k)
$
- **Continuous Formulation**:
$
H_{\text{cont}} = -\int_{\tau} p(\mathbf{I}) \log p(\mathbf{I}) \, d\mathbf{I}
$
- **Example**:
- A broken egg has higher $H$ due to more positional and thermal state permutations.
---
## **8. Gravity ($G$)**
- **Definition**: Emergent force from information density and sequence dynamics.
- **Formula**:
$
G \propto \rho_{\mathbf{I}} \cdot \kappa_{\text{avg}} \cdot \frac{d|\tau|}{d\epsilon}
$
- $\kappa_{\text{avg}} = \frac{1}{|\tau|^2} \sum_{i,j} \kappa(\mathbf{I}_i, \mathbf{I}_j)$.
- **Example**:
- Galactic rotation curves arise from $\rho_{\mathbf{I}} \cdot \kappa_{\text{avg}}$, not dark matter.
---
## **9. Consciousness ($\phi$)**
- **Definition**: Emergent complexity from mimicry, causality, and repetition.
- **Formula**:
$
\phi \propto M \cdot \lambda \cdot \rho
$
- $M$: Similarity between sequences ($M = \frac{\sum \kappa(\mathbf{I}_i, \mathbf{I}_j)}{|\tau|}$).
- $\lambda$: Causality ($\lambda = \frac{P(\mathbf{I}_b | \mathbf{I}_a)}{P(\mathbf{I}_b)}$).
- $\rho$: Repetition fraction ($\rho = \frac{\text{Repeated states}}{|\tau|}$).
- **Example**:
- Human consciousness requires $\phi > \phi_{\text{threshold}}$ due to neural repetition and mimicry.
---
## **10. Change ($\Delta \mathbf{I}$)**
- **Definition**: Transition between states in $\tau$.
- **Formula**:
$
\Delta \mathbf{I} = \mathbf{I}_{k+1} - \mathbf{I}_k \quad \text{(Difference between consecutive observations)}
$
- **Example**:
- A photon’s polarization change: $\Delta I_{\text{polarization}}$.
---
## **11. Repetition ($\rho$)**
- **Definition**: Frequency of repeated states in $\tau$.
- **Formula**:
$
\rho = \frac{\sum_{k=1}^{|\tau|} \sum_{j=k+1}^{|\tau|} \delta(\mathbf{I}_k, \mathbf{I}_j)}{|\tau|} \quad \text{(Dirac delta for state equality)}
$
- **Example**:
- Earth’s daily rotation: $\rho_{\text{rotation}} \approx 1$ (repeats every $24$ hours).
---
## **12. Causality ($\lambda$)**
- **Definition**: Directional dependency between states via conditional probabilities.
- **Formula**:
$
\lambda(\mathbf{I}_a \rightarrow \mathbf{I}_b) = \frac{P(\mathbf{I}_b | \mathbf{I}_a)}{P(\mathbf{I}_b)}
$
- **Example**:
- A billiard ball’s motion: $\lambda_{\text{collision}}$ predicts post-collision states.
---
## **13. Mimicry ($M$)**
- **Definition**: Similarity between sequences or states.
- **Formula**:
$
M = \frac{\sum_{d=1}^D \sum_{i,j} \kappa_d(\mathbf{I}_i, \mathbf{I}_j)}{D \cdot |\tau|} \quad \text{(Normalized contrast across dimensions)}
$
- **Example**:
- Quantum entanglement: $M_{\text{entangled}} \geq 1$ at fine $\epsilon$.
---
## **14. Probability ($P$)**
- **Definition**: Probability of an information state occurring in $\tau$.
- **Formula**:
$
P(\mathbf{I}_k) = \frac{\text{Frequency of } \mathbf{I}_k \text{ in } \tau}{|\tau|}
$
- **Example**:
- A fair coin: $P(I_{\text{heads}}) = P(I_{\text{tails}}) = 0.5$.
---
## **15. Informational Dimensions ($D$ and $d$)**
- **$D$**: Total dimensions (uppercase).
- **Example**: A particle’s $D = 3$ (position) + $1$ (spin) + $1$ (energy) → $D = 5$.
- **$d$**: Specific dimension index (lowercase).
- **Example**: $I_{\text{position}} = I_{d=1}$.
---
## **16. Edge Networks**
- **Definition**: Graphs encoding informational correlations ($\kappa \geq 1$).
- **Formula**:
$
G = (V, E) \quad \text{where } V = \{\mathbf{I}_1, \dots, \mathbf{I}_N\}, \quad E = \{\kappa(\mathbf{I}_i, \mathbf{I}_j) \geq 1\}
$
- **Example**:
- Quantum entanglement forms edges $E$ with $\kappa \geq 1$.
---
# **Notation Conventions**
1. **Vectors**:
- Boldface ($\mathbf{I}$) denotes vectors.
- Subscripts: $\mathbf{I}_k$ (observation $k$), $I_{kd}$ (dimension $d$ of observation $k$).
2. **Scalars**:
- Non-bold symbols ($\epsilon$, $H$, $G$) are scalars.
3. **Indices**:
- $k$: Observation index (rows in a dataset).
- $d$: Dimension index (columns in a dataset).
4. **Functions**:
- $\text{round}(\cdot)$: Discretizes $\mathbf{I}$ into $\hat{\mathbf{I}}$.
- $\delta(\cdot)$: Dirac delta function for state equality.
---
# **Expressions And Equations**
## **1. Contrast Between States**
$
\kappa(\mathbf{I}*i, \mathbf{I}*j) = \frac{\sqrt{\sum*{d=1}^D (I*{id} - I_{jd})^2}}{\epsilon}
$
- **Purpose**: Quantifies distinguishability across all dimensions.
## **2. Information Density**
$
\rho_{\mathbf{I}} = \frac{\text{Count}(\kappa \geq 1)}{\epsilon^D \cdot \Delta|\tau|}
$
- **Purpose**: Measures how tightly distinguishable states are packed in $D$-dimensional space.
## **3. Time Emergence**
$
t \propto \frac{|\tau|}{\epsilon} \quad \text{(Discrete sequence length scaled by resolution)}
$
## **4. Gravity Formula**
$
G \propto \rho_{\mathbf{I}} \cdot \kappa_{\text{avg}} \cdot \frac{d|\tau|}{d\epsilon}
$
- **Purpose**: Unifies gravity as an informational effect, eliminating dark matter.
## **5. Entropy Gradient**
$
\frac{\partial H}{\partial |\tau|} > 0 \quad \text{(Entropy increases with sequence length)}
$
## **6. Causality**
$
\lambda(\mathbf{I}_a \rightarrow \mathbf{I}_b) = \frac{P(\mathbf{I}_b | \mathbf{I}_a)}{P(\mathbf{I}_b)}
$
## **7. Consciousness Threshold**
$
\phi \propto \frac{\sum \kappa \cdot \lambda \cdot \rho}{|\tau|} \quad \text{(Requires $\phi > \phi_{\text{threshold}}$)}
$
---
# **Key Cross-Concept Dependencies**
1. **Gravity Depends On**:
- $\rho_{\mathbf{I}}$: Information density.
- $\kappa_{\text{avg}}$: Average contrast.
- $\epsilon$: Resolution defining sequence progression.
2. **Consciousness Depends On**:
- $M$: Mimicry of neural patterns.
- $\lambda$: Synaptic causality.
- $\rho$: Repetition in brain sequences ($\tau$).
3. **Edge Networks Govern**:
- $E_{ij}$: Links states with $\kappa \geq 1$.
- **Example**: Quantum entanglement → $E_{ij} = 1$.
---
# **Examples Of Symbol Usage**
1. **Planetary Motion**:
- Observations: $\mathbf{I}_k$ (position, velocity, mass).
- **Gravity**:
$
G_{\text{planets}} \propto \rho_{\mathbf{I}} \cdot \kappa_{\text{position}} \cdot \frac{d|\tau|}{d\epsilon}
$
2. **Quantum Entanglement**:
- **Edge Network**: $G_{\text{quantum}}$ links $\mathbf{I}_1$ and $\mathbf{I}_2$ with $\kappa \geq 1$.
3. **Consciousness in AI**:
- **Threshold**:
$
\phi_{\text{AI}} \propto \frac{\sum_{\tau} \kappa(\mathbf{I}_i, \mathbf{I}_j) \cdot \lambda \cdot \rho}{|\tau|}
$
---