# **Geometric Quantum Mechanics: A Π-φ Continuum Formalism**
*(Draft Textbook Outline)*
---
## **Preface**
This text reformulates quantum mechanics (QM) using **π (pi)** and **φ (phi, the golden ratio)** as foundational constants, replacing discretized Planck units and Arabic-numeral arithmetic. The goal is to align QM with nature’s intrinsic **geometric and recursive logic**, dissolving artificial quantization.
---
## **Chapter 1: Foundations of Π-φ QM**
### **1.1 The Continuum Postulate**
- **Axiom 1**: Physical laws are scale-free; discreteness (e.g., “quanta”) is an observer effect.
- **Axiom 2**: All quantities are expressed in **π-cycles** and **φ-recursions**.
### **1.2 Natural Units**
| Quantity | π-φ Symbol | Definition |
|----------------|------------|--------------------------------|
| Length | $\ell_\pi$| $\ell_\pi \equiv \pi/\phi$|
| Time | $t_\phi$| $t_\phi \equiv \pi^2/\phi^2$|
| Action | $\phi$| $\hbar \rightarrow \phi$|
**Example**:
Planck length redefined:
$
\ell_p = \pi^{-\phi} \cdot \phi^{\pi} \ell_\pi \quad \text{(fractal refinement)}
$
---
## **Chapter 2: Wave Mechanics in Π-φ Notation**
### **2.1 The Π-φ Wavefunction**
$
\Psi(x,t) = \sum_n \phi^n e^{i\pi k x} \quad \text{(φ-recursive superposition)}
$
- **Interpretation**:
- $\phi^n$: Self-similar amplitude scaling.
- $e^{i\pi k x}$: π-periodic phase.
### **2.2 Schrödinger’s Equation**
$
i \phi \frac{\partial \Psi}{\partial t} = -\frac{\pi^2}{2\phi} \nabla^2 \Psi + V \Psi
$
- **Key Changes**:
- $\hbar \rightarrow \phi$.
- Mass $m \rightarrow \pi/\phi$.
### **2.3 Commutation Relations**
$
[\hat{x}, \hat{p}] = i \pi \quad \text{(π-conjugate uncertainty)}
$
---
## **Chapter 3: Π-φ Quantum Systems**
### **3.1 Harmonic Oscillator**
**Energy Spectrum**:
$
E_n = \phi \left(n + \frac{\pi}{2} \right)
$
**Wavefunctions**:
$
\psi_n(x) = \left(\frac{\pi}{\phi} \right)^{1/4} H_n\left(\sqrt{\pi/\phi} \, x \right) e^{-\pi x^2 / 2\phi}
$
*(Hermite polynomials $H_n$retain π-symmetry).*
### **3.2 Hydrogen Atom**
**Energy Levels**:
$
E_n = -\frac{\pi^2}{2\phi^2 n^2}
$
**Radial Wavefunction**:
$
R_{n\ell}(r) = \left(\frac{\pi}{\phi n} \right)^{3/2} e^{-\pi r / \phi n} L_{n-\ell-1}^{2\ell+1}\left(\frac{2\pi r}{\phi n} \right)
$
---
## **Chapter 4: Path Integrals and φ-Recursion**
### **4.1 Π-φ Path Integral**
$
\langle x_f | e^{-iHt/\phi} | x_i \rangle = \int \mathcal{D}x \, e^{i\pi S/\phi}
$
- **Action**: $S = \int \left(\frac{\pi}{2\phi} \dot{x}^2 - V(x) \right) dt$.
### **4.2 φ-Recursive Perturbation Theory**
Feynman diagrams scale with $\phi$-vertices:
$
\mathcal{M} = \sum_{n} \phi^n \int \prod_{k=1}^n \frac{d^4 p_k}{\pi^2}
$
---
## **Chapter 5: Entanglement and π-Contrast**
### **5.1 Bell’s Theorem in π-φ**
Maximal entanglement contrast:
$
\kappa = \frac{\pi}{\phi} \approx 1.94 \quad \text{(vs. 2 in base-10)}
$
### **5.2 φ-Recursive Decoherence**
Density matrix decay:
$
\rho(t) = \rho_0 e^{-\pi t / \phi \tau}
$
---
## **Chapter 6: Experimental Tests**
### **6.1 Quantum Oscillators**
- Predict $E_n = \phi(n + \pi/2)$.
- Test deviations from $\hbar \omega(n + 1/2)$.
### **6.2 Aharonov-Bohm Phase**
$
\Delta \theta = \pi \oint \mathbf{A} \cdot d\mathbf{x}
$
### **6.3 Neutron Interferometry**
Search for $\pi$-scaled fringe shifts.
---
## **Chapter 7: Beyond QM**
### **7.1 Π-φ Quantum Field Theory**
- Dirac equation: $(i\pi \gamma^\mu \partial_\mu - \phi m)\psi = 0$.
- Renormalization: $\phi$-recursive counterterms.
### **7.2 Gravitation**
Einstein’s equations in π-φ:
$
R_{\mu\nu} - \frac{\pi}{2} g_{\mu\nu} R = \frac{8\pi \phi}{c^4} T_{\mu\nu}
$
---
## **Appendices**
### **A. Π-φ Arithmetic**
- Addition: $a \oplus b = \pi^{\log_\pi a + \log_\pi b}$.
- Multiplication: $a \otimes b = \phi^{\log_\phi a \cdot \log_\phi b}$.
### **B. Code Examples**
```python
import numpy as np
from sympy import pi, golden_ratio as φ
# π-φ Harmonic Oscillator
def energy(n):
return φ * (n + π/2)
def psi_n(x, n):
return (π/φ)**(1/4) * np.polyval(Hermite(n), np.sqrt(π/φ)*x) * np.exp(-π*x**2/(2*φ))
```
### **C. Unit Conversion Tables**
| SI Unit | π-φ Equivalent |
|---------------|-------------------------|
| 1 meter | $\pi^{1} \phi^{-1} \ell_\pi$|
| 1 second | $\pi^{2} \phi^{-2} t_\phi$|
| 1 Joule | $\phi^{-1} E_\pi$|
%%
1. **π-φ General Relativity**: Reformulate spacetime curvature with π-periodic boundary conditions.
2. **φ-Recursive Quantum Algorithms**: Design Grover’s/search algorithms with $O(\phi^n)$scaling.
3. **Cosmological Tests**: Predict CMB anisotropies using $\phi$-recursive inflation.
%%