# **Geometric Quantum Mechanics: A Π-φ Continuum Formalism** *(Draft Textbook Outline)* --- ## **Preface** This text reformulates quantum mechanics (QM) using **π (pi)** and **φ (phi, the golden ratio)** as foundational constants, replacing discretized Planck units and Arabic-numeral arithmetic. The goal is to align QM with nature’s intrinsic **geometric and recursive logic**, dissolving artificial quantization. --- ## **Chapter 1: Foundations of Π-φ QM** ### **1.1 The Continuum Postulate** - **Axiom 1**: Physical laws are scale-free; discreteness (e.g., “quanta”) is an observer effect. - **Axiom 2**: All quantities are expressed in **π-cycles** and **φ-recursions**. ### **1.2 Natural Units** | Quantity | π-φ Symbol | Definition | |----------------|------------|--------------------------------| | Length | $\ell_\pi$| $\ell_\pi \equiv \pi/\phi$| | Time | $t_\phi$| $t_\phi \equiv \pi^2/\phi^2$| | Action | $\phi$| $\hbar \rightarrow \phi$| **Example**: Planck length redefined: $ \ell_p = \pi^{-\phi} \cdot \phi^{\pi} \ell_\pi \quad \text{(fractal refinement)} $ --- ## **Chapter 2: Wave Mechanics in Π-φ Notation** ### **2.1 The Π-φ Wavefunction** $ \Psi(x,t) = \sum_n \phi^n e^{i\pi k x} \quad \text{(φ-recursive superposition)} $ - **Interpretation**: - $\phi^n$: Self-similar amplitude scaling. - $e^{i\pi k x}$: π-periodic phase. ### **2.2 Schrödinger’s Equation** $ i \phi \frac{\partial \Psi}{\partial t} = -\frac{\pi^2}{2\phi} \nabla^2 \Psi + V \Psi $ - **Key Changes**: - $\hbar \rightarrow \phi$. - Mass $m \rightarrow \pi/\phi$. ### **2.3 Commutation Relations** $ [\hat{x}, \hat{p}] = i \pi \quad \text{(π-conjugate uncertainty)} $ --- ## **Chapter 3: Π-φ Quantum Systems** ### **3.1 Harmonic Oscillator** **Energy Spectrum**: $ E_n = \phi \left(n + \frac{\pi}{2} \right) $ **Wavefunctions**: $ \psi_n(x) = \left(\frac{\pi}{\phi} \right)^{1/4} H_n\left(\sqrt{\pi/\phi} \, x \right) e^{-\pi x^2 / 2\phi} $ *(Hermite polynomials $H_n$retain π-symmetry).* ### **3.2 Hydrogen Atom** **Energy Levels**: $ E_n = -\frac{\pi^2}{2\phi^2 n^2} $ **Radial Wavefunction**: $ R_{n\ell}(r) = \left(\frac{\pi}{\phi n} \right)^{3/2} e^{-\pi r / \phi n} L_{n-\ell-1}^{2\ell+1}\left(\frac{2\pi r}{\phi n} \right) $ --- ## **Chapter 4: Path Integrals and φ-Recursion** ### **4.1 Π-φ Path Integral** $ \langle x_f | e^{-iHt/\phi} | x_i \rangle = \int \mathcal{D}x \, e^{i\pi S/\phi} $ - **Action**: $S = \int \left(\frac{\pi}{2\phi} \dot{x}^2 - V(x) \right) dt$. ### **4.2 φ-Recursive Perturbation Theory** Feynman diagrams scale with $\phi$-vertices: $ \mathcal{M} = \sum_{n} \phi^n \int \prod_{k=1}^n \frac{d^4 p_k}{\pi^2} $ --- ## **Chapter 5: Entanglement and π-Contrast** ### **5.1 Bell’s Theorem in π-φ** Maximal entanglement contrast: $ \kappa = \frac{\pi}{\phi} \approx 1.94 \quad \text{(vs. 2 in base-10)} $ ### **5.2 φ-Recursive Decoherence** Density matrix decay: $ \rho(t) = \rho_0 e^{-\pi t / \phi \tau} $ --- ## **Chapter 6: Experimental Tests** ### **6.1 Quantum Oscillators** - Predict $E_n = \phi(n + \pi/2)$. - Test deviations from $\hbar \omega(n + 1/2)$. ### **6.2 Aharonov-Bohm Phase** $ \Delta \theta = \pi \oint \mathbf{A} \cdot d\mathbf{x} $ ### **6.3 Neutron Interferometry** Search for $\pi$-scaled fringe shifts. --- ## **Chapter 7: Beyond QM** ### **7.1 Π-φ Quantum Field Theory** - Dirac equation: $(i\pi \gamma^\mu \partial_\mu - \phi m)\psi = 0$. - Renormalization: $\phi$-recursive counterterms. ### **7.2 Gravitation** Einstein’s equations in π-φ: $ R_{\mu\nu} - \frac{\pi}{2} g_{\mu\nu} R = \frac{8\pi \phi}{c^4} T_{\mu\nu} $ --- ## **Appendices** ### **A. Π-φ Arithmetic** - Addition: $a \oplus b = \pi^{\log_\pi a + \log_\pi b}$. - Multiplication: $a \otimes b = \phi^{\log_\phi a \cdot \log_\phi b}$. ### **B. Code Examples** ```python import numpy as np from sympy import pi, golden_ratio as φ # π-φ Harmonic Oscillator def energy(n): return φ * (n + π/2) def psi_n(x, n): return (π/φ)**(1/4) * np.polyval(Hermite(n), np.sqrt(π/φ)*x) * np.exp(-π*x**2/(2*φ)) ``` ### **C. Unit Conversion Tables** | SI Unit | π-φ Equivalent | |---------------|-------------------------| | 1 meter | $\pi^{1} \phi^{-1} \ell_\pi$| | 1 second | $\pi^{2} \phi^{-2} t_\phi$| | 1 Joule | $\phi^{-1} E_\pi$| %% 1. **π-φ General Relativity**: Reformulate spacetime curvature with π-periodic boundary conditions. 2. **φ-Recursive Quantum Algorithms**: Design Grover’s/search algorithms with $O(\phi^n)$scaling. 3. **Cosmological Tests**: Predict CMB anisotropies using $\phi$-recursive inflation. %%